Logaritma Dan Eksponen

Logaritma Dan Eksponen

Sifat-Sifat Logaritma

Logaritma memiliki beberapa sifat yang harus dipahami agar nanti saat mengerjakan soal logaritma dan penyelesaiannya full agar gak merasa bingung. Berikut sifat-sifat logaritma:

Sifat-sifat logaritma di atas bisa elo pelajari dengan baik terlebih dahulu. Apabila elo sudah memahaminya, otomatis elo juga akan mudah mengerjakan soal-soal yang berkaitan dengan logaritma nanti.

Jangan langsung kesel karena lihat sifat-sifat logaritma di atas ya, hehehe. Semua akan mudah dipahami saat sifat-sifat logaritma dan contohnya elo ketahui. Jadi perlu sering mengerjakan contoh soal logaritma.

Logaritma termasuk dalam ragam pembahasan rumus matematika umum. Untuk mempelajari ragam lainnya, klik link berikut: Kumpulan Rumus Matematika Lengkap dengan Keterangannya.

Selanjutnya, elo perlu tahu jika dalam materi logaritma terdapat topik mengenai persamaan logaritma.

Persamaan logaritma adalah persamaan yang terdiri dari dua bentuk logaritma terletak di kanan dan kiri, di mana variabel terdapat dalam basis atau numerus keduanya yang dihubungkan oleh tanda sama dengan.

Sebenarnya, bentuknya sama seperti logaritma pada umumnya, hanya saja pada persamaan logaritma, bentuk logaritmanya ada pada dua ruas, kanan dan kiri. Berikut contohnya:

Nah, persamaan logaritma juga memiliki beberapa bentuk sebagai berikut:

Aduh… kok keliatan susah ya? Oke, agar lebih paham, ayo kerjakan contoh soal persamaan logaritma berikut ini.

Nilai yang memenuhi persamaan berikut adalah…

Nah, itu contoh soal persamaan logaritma. Elo bisa tebak gak soal itu menggunakan bentuk persamaan logaritma yang mana?

Pelajari juga tentang grafik fungsi logaritma dan cara menggambarnya di link berikut: Cara Menggambar Grafik Fungsi Trigonometri dan Persamaannya.

Bentuk Umum Logaritma

Oke, kita lanjut ya. Setelah kamu tahu apa itu logaritma, kamu juga harus tahu kalau logaritma itu memiliki bentuk umum. Seperti apa bentuk umum logaritma? Mari kita lihat pada gambar berikut ini!

Sekarang, kita perhatikan contoh di bawah ini dulu yuk agar kamu semakin paham.

1. Jika 32 = 9, maka dalam bentuk logaritma akan menjadi 3log 9 = 2

2. Jika 23 = 8, maka dalam bentuk logaritma akan menjadi 2log 8 = 3

3. Jika 53 = 125, maka dalam bentuk logaritma akan menjadi 5log 125 = 3

Baca Juga: Yuk, Pahami Fungsi Trigonometri Sederhana!

Gimana? Sudah mulai paham, kan? Nah, biasanya nih, kamu masih akan sering bingung untuk menentukan mana angka yang menjadi basis dan mana angka yang menjadi numerus. Iya nggak?

Tenang, guys! Kuncinya, kamu ingat saja kalau bilangan pokok itu basis, letaknya di atas sebelum tanda ‘log’ dan bilangan hasil pangkat itu numerus, letaknya di bawah setelah kata ‘log’. Mudah, kan?

Buku Saku Hafal Mahir Teori dan Rumus Matematika SMA/MA Kelas 10, 11, 12

Buku Saku Hafal Mahir Teori dan Rumus Matematika SMA/MA Kelas 10,11,12 merupakan buku belajar yang praktis dan lengkap.

Buku Saku Hafal Mahir Teori dan Rumus Matematika dapat menjadi solusi belajar menyenangkan kapan saja dan di mana saja.

Sifat Perkalian dan Pembagian Logaritma

Sifat logaritma yang keenam yakni perkalian dan pembagian logaritma. Sifat ini merupakan penyederhanaan dua logaritma. Kedua, logaritma tersebut memiliki numerus yang mirip.

Logaritma Pada Kehidupan Sehari-Hari

Logaritma banyak dimanfaatkan dalam sebuah kehidupan sehari-hari. Dahulu, sebelum masyarakat mengenal adanya kalkulator, logaritma dimanfaatkan untuk menghitung perhitungan eksponensial.

Selain itu, ada manfaat lain dalam konsep logaritma ini. Konsep logaritma tersebut dipakai untuk melakukan perhitungan seismograf maupun alat pengukur kekuatan gempa.

Satuan skala richter ini juga memakai konsep logaritma di dalam perhitungannya. Dalam bidang astronomi juga dipakai sebagai alat perhitungan dalam mengukur tingkat keterangan dari suatu bintang. Nah, bagi Anda yang penasaran, bagaimana rumus logaritma. Berikut telah disajikan informasi terkait rumus logaritma.

Pada pembahasan sebelumnya Anda telah mengetahui pengertian dari logaritma dan manfaat dari logaritma. Berikut merupakan pembahasan terkait rumus logaritma, diantaranya:

● Bentuk dari logaritma yang telah dinyatakan ke dalam bentuk alog b = c. ● Simbol a menyatakan suatu bilangan pokok logaritma maupun basis, b dengan menentukan range atau hasil dari logarigma, dan c adalah domain logaritma.

Setelah Anda mengetahui tentang rumus logaritma, Anda juga perlu mengetahui sifat logaritma.

Logaritma juga mempunyai sifat yang beraneka macam, nantinya sifat-sifat ini pula akan dapat membantu Anda dalam menyelesaikan soal-soal terkait logaritma. Cara yang dapat Anda lakukan yaitu mengetahui sifat logaritma, diantaranya sebagai berikut:

● Sifat logaritma dasar, yakni suatu bilangan yang dipangkatkan dengan angka 1, maka hasilnya akan tetap sama seperti yang sebelumnya. ● Sifat logaritma koefisien, yakni saat terdapat contoh terkait soal logaritma yang diberikan mempunyai pangkat. Maka pangkat dari basis atau biasa disebut numerus sebagai koefisien dari logaritma. ● Sifat logaritma akan berbanding terbalik, yakni suatu sifat yang mempunyai prasyarat berupa logaritma yang berbanding terbalik antara basis terhadap numerus. ● Sifat perpangkatan logaritma, adalah suatu bilangan yang dipangkatkan dengan logaritma yang mempunyai basis sama, maka hasilnya akan berupa suatu numerus dari logaritma itu sendiri. ● Sifat Penjumlahan dan pengurangan merupakan logaritma yang dapat dijumlahkan dengan logaritma lainnya yang mempunyai basis yang serupa. ● Sifat perkalian dan juga pembagian logaritma, adalah dua buah logaritma yang disederhanakan. Sebab keduanya mempunyai numerus yang serupa. ● Sifat logaritma numerus terbalik, maka logaritma bisa mempunyai nilai yang serupa dengan logaritma lainnya. Bila numerus menggunakan pecahan terbalik.

Selain itu, terdapat sejumlah sifat logaritma lainnya, yang penting untuk Anda ketahuinya, diantaranya:

● a log a = 1 ● a log 1 = 0 ● a^nlog bm = (m/n) x a log b ● a^mlog bm = a log b ● a log b = 1/b log a ● a log b = (klog b) / (klog a) ● a(a log b) = b ● a log b + a log c = a log (bc) ● a log b – a log c = a log (b/c) ● a log b . b log c = a log c ● a log (b/c) = – a log (c/b)

Selanjutnya terdapat pembahasan terkait persamaan logaritma. Mari perhatikan secara seksama.

Secara umum logaritma mempunyai sejumlah teknik penyelesaian yang mencakup persamaan logaritma, pertidaksamaan logaritma, dan juga cara menghitung logaritma. Berikut adalah pembahasannya.

Sifat-Sifat Logaritma

Logaritma juga memiliki sifat-sifat yang wajib kamu pahami, nih. Kenapa wajib? Oh ya jelas, karena sifat-sifat inilah yang akan menjadi bekal kamu untuk mengerjakan soal-soal logaritma. Tanpa memahami sifat-sifat logaritma, kamu tidak akan bisa mengerjakan soal-soal logaritma, lho!

Lalu, apa saja sih sifat-sifat logaritma dan contohnya? Yuk, kita simak pada gambar di bawah ini!

“Duh, kenapa banyak banget sih sifat-sifat logaritma itu? Males ih ngafalinnya. Ribet!”

Eits… jangan salah, semua sifat di atas pasti bisa kamu kuasai dengan mudah, kok. Caranya, kamu bisa memperbanyak latihan soal tentang logaritma. Tentunya, di aplikasi Ruangguru, dong. Hehehe…

Baca Juga: Bentuk-Bentuk Persamaan Logaritma dan Cara Menyelesaikannya

Oke, supaya kamu jadi paham sifat-sifat logaritma di atas dipakai untuk model soal seperti apa, ayo kita coba kerjakan soal di bawah ini. Kita kerjakan bersama-sama, ya!

Gimana, kamu sudah cukup paham tentang materi logaritma? Sebelum lanjut ke contoh-contoh soal logaritma, misalnya kamu mau mempelajari materi logaritma bareng ahlinya, boleh banget gabung di Ruangguru Privat Matematika.

Di Ruangguru Privat, kamu akan dimentori oleh guru-guru berkualitas yang sudah terstandarisasi. Kamu juga bebas mau pilih belajar secara tatap muka (offline) atau lewat daring (online). Fleksibel banget, kan. Yuk langsung daftar sekarang!

Sifat Perpangkatan Logaritma

Sifat perpangkatan logaritma ini berupa bilangan yang dipangkatkan dengan logaritma dengan basis yang sama. Hasilnya adalah logaritma itu sendiri.

Contoh Soal Logaritma

Berikut adalah salah satu contoh soal logaritma, antara lain.

Pembahasannya Guna mengerjakan soal tersebut Anda perlu untuk memahami akan 3 (tiga) sifat logaritma, antara lain:

Setelah Anda memahami 3 (tiga) sifat diatas, maka Anda bisa memakai ketiga sifat itu guna menyelesaikan soal logaritma diatas.

Pertama Anda bisa memakai sifat pertama dan sifat kedua guna menyederhanakan pembilang dan juga penyebut pada soal logaritma tersebut.

Lalu, Anda akan memperoleh bentuk seperti diatas, kemudian Anda bisa memakai sifat ketiga guna menyederhanakan kembali menjadi bentuk seperti di bawah ini.

Anda bisa memakai penyederhanaan dengan bentuk log 10000 menjadi log 4.

Hasil dari penyelesaian soal logaritma tersebut yaitu ¼.

Bagi Anda yang belum mengetahui atau belum mempelajari tentang eksponensial atau bisa disebut juga dengan perpangkatan. Maka Anda perlu mengetahuinya secara lebih dalam lagi. Lalu, Apa saja yang bisa Anda pelajari dan pahami dari materi eksponensial ini?

Konsep materi dari eksponensial yang akan dipakai pada pembahasan kali ini yaitu mempelajari materi dari logaritma. Materi logaritma ini sangat penting Anda ketahuinya, agar Anda dapat mengetahui manfaat dari logaritma dalam kehidupan sehari-hari. Nah, Apa saja itu? Mari perhatikan pembahasan berikut ini mulai dari pengertian logaritma hingga contoh soal.

Mengetahui sifat dari logaritma, di dalam suatu ilmu matematika, logaritma adalah kebalikan atau invers dari eksponen atau pemangkatan. Secara sederhananya saja, logaritma bisa diartikan sebagai suatu invers atau kebalikan dari pemangkatan yang digunakan dalam menentukan besaran pangkat pada sebuah bilangan pokok.

Sehingga intinya bahwa dengan Anda mempelajari ilmu logaritma, maka Anda akan bisa mencari besaran pangkat dari suatu bilangan yang telah diketahui hasil pangkatnya.

Fungsi logaritma ini tidak cuma dipakai di dalam sebuah ilmu matematika saja, akan tetapi juga dipakai di dalam ilmu pengetahuan alam atau biasa dikenal dengan sebutan IPA. Serta juga digunakan pada ilmu kimia guna menentukan orde reaksi, pengetahuan akan akustik guna memilih koefisien serap bunyi yang pas, dan lain sebagainya. Selain itu, logaritma ini juga dipakai dalam mengukur laju pertumbuhan dari penduduk, antropologi dan keuangan guna menghitung bunga majemuk.

Contoh Soal Logaritma dan Pembahasannya

Sekarang, kita coba kerjakan contoh soal logaritma, ya! Perhatikan soal berikut:

Pada soal nomor 1, hal pertama yang harus kita lakukan adalah cek basisnya. Kedua persamaan logaritma di atas, ternyata memiliki nilai basis yang sama, yaitu 2.

Nah, karena basisnya sama, kita bisa menggunakan sifat logaritma yang kedua nih, untuk mengetahui hasilnya. Sehingga, 2log 4 + 2log 8 = 2log (4 × 8) = 2log 32 = 5.

Ingat! tujuan logaritma adalah mencari pangkat. Jadi, 2 pangkat berapa yang hasilnya 32? Jawabannya adalah 5. Mudah, ya? Kita lanjut ke soal nomor 2, yuk!

Pada soal nomor 2 ini, kita tidak bisa langsung mengerjakannya karena kamu pasti akan bingung untuk mencari nilai pangkat dari 8 yang hasilnya 32. Lalu bagaimana?

Kalau kita perhatikan soalnya dengan jeli, 8 itu merupakan hasil pemangkatan dari 23 dan 32 merupakan hasil pemangkatan dari 25. Sehingga, bentuk logaritmanya bisa kita ubah menjadi seperti berikut:

Gimana? sudah mulai greget? Nah, soal nomor 3 ini akan membuat kamu semakin gregetan lagi, nih! Perlu kamu ketahui, model soal nomor 3 akan sering kamu temui pada soal-soal ujian maupun soal-soal seleksi Perguruan Tinggi, lho.

Kelihatannya memang cukup rumit ya, tapi jika kamu telah paham konsepnya, soal ini akan jadi sangat mudah untuk dikerjakan. Jika kamu menemui model soal seperti ini, kamu bisa menyelesaikannya menggunakan sifat logaritma nomor 4.

Sehingga, pengerjaannya akan menjadi seperti berikut:

Note: Untuk memilih basis, kita lihat saja angka yang paling sering muncul pada soal. Angka 2 muncul sebanyak 2 kali, 8 sebanyak 1 kali, dan 7 sebanyak 1 kali. Angka yang paling banyak muncul adalah 2, sehingga kita pilih 2 sebagai basis. Paham, ya?

Selanjutnya, kita uraikan numerusnya. Usahakan kita ubah kebentuk yang sudah ada pada soal. Maksudnya gimana? Begini, di soal diketahui 2log 8 dan 2log 7. Karena numerusnya 8 dan 7, kita uraikan 14 menjadi 7 × 2 dan 16 menjadi 8 × 2 agar kita bisa ketahui hasil akhirnya.

Baca Juga: Belajar Fungsi Komposisi & Contohnya, Lengkap!

Setelah kamu memahami ketiga contoh soal di atas, bagaimana menurutmu? Ternyata logaritma bukanlah materi yang sulit untuk dipahami, ya.

Kamu juga perlu ingat nih, karena tujuan logaritma adalah mencari pangkat, maka modal pertama yang harus kamu miliki adalah hafal perkalian. Setelah itu, kamu juga harus paham dengan sifat-sifat logaritma. Jangan lupa untuk perbanyak latihan soal agar kamu semakin mantap lagi, nih.

Oh ya, di bawah ini ada latihan soal yang bisa kamu kerjakan. Bagi yang tahu, jangan ragu untuk tulis jawabanmu di kolom komentar ya!

Wah, menarik ya pembahasan kali ini. Bagi kamu yang masih kurang paham, kamu bisa lho, belajar lebih lanjut di ruangbelajar. Belajar jadi mudah dan praktis di mana saja dan kapan saja. Yuk, buruan download aplikasinya sekarang!

Sinaga, B. Sinambela, P. N. J. M. Sitanggang, A. K. dkk. (2014). Matematika. Jakarta: Kemendikbud.

Bagi Anda yang belum mengetahui atau belum mempelajari tentang eksponensial atau bisa disebut juga dengan perpangkatan. Maka Anda perlu mengetahuinya secara lebih dalam lagi. Lalu, Apa saja yang bisa Anda pelajari dan pahami dari materi eksponensial ini?

Konsep materi dari eksponensial yang akan dipakai pada pembahasan kali ini yaitu mempelajari materi dari logaritma. Materi logaritma ini sangat penting Anda ketahuinya, agar Anda dapat mengetahui manfaat dari logaritma dalam kehidupan sehari-hari. Nah, Apa saja itu? Mari perhatikan pembahasan berikut ini mulai dari pengertian logaritma hingga contoh soal.

Mengetahui sifat dari logaritma, di dalam suatu ilmu matematika, logaritma adalah kebalikan atau invers dari eksponen atau pemangkatan. Secara sederhananya saja, logaritma bisa diartikan sebagai suatu invers atau kebalikan dari pemangkatan yang digunakan dalam menentukan besaran pangkat pada sebuah bilangan pokok.

Sehingga intinya bahwa dengan Anda mempelajari ilmu logaritma, maka Anda akan bisa mencari besaran pangkat dari suatu bilangan yang telah diketahui hasil pangkatnya.

Fungsi logaritma ini tidak cuma dipakai di dalam sebuah ilmu matematika saja, akan tetapi juga dipakai di dalam ilmu pengetahuan alam atau biasa dikenal dengan sebutan IPA. Serta juga digunakan pada ilmu kimia guna menentukan orde reaksi, pengetahuan akan akustik guna memilih koefisien serap bunyi yang pas, dan lain sebagainya. Selain itu, logaritma ini juga dipakai dalam mengukur laju pertumbuhan dari penduduk, antropologi dan keuangan guna menghitung bunga majemuk.

Sifat Logaritma Koefisien

Sifat logaritma yang selanjutnya yakni koefisien. Contoh soalnya yakni adanya logaritma yang memiliki pangkat, maka pangkat basis itulah yang menjadi koefisien logaritma tersebut.